Electronic structure of the two isomers of the anionic form of p-coumaric acid chromophore.
نویسندگان
چکیده
A theoretical study of the electronic structure of the photoactive yellow protein (PYP) model chromophore, para-coumaric acid (p-CA), is presented. Electronically excited states of the phenolate and carboxylate isomers of the deprotonated p-CA are characterized by high-level ab initio methods including state-specific and multistate multireference pertrubation theory (SS-CASPT2, and MS-CASPT2), equation-of-motion coupled-cluster methods with single and double substitutions (EOM-CCSD) and with an approximate account of triple excitations (CC3). We found that the two isomers have distinctly different patterns of ionization and excitation energies. Their excitation energies differ by more than 1 eV, in contradiction to the experimental report [Rocha-Rinza et al., J. Phys. Chem. A 113, 9442 (2009)]. The calculations confirm metastable (autoionizing) character of the valence excited states of both phenolate and carboxylate isomers of p-CA(-) in the gas phase. The type of resonance is different in the two forms. In the phenolate, the excited state lies above the detachment continuum (a shape resonance), whereas in the carboxylate the excited π→π(*) state lies below the π-orbital ionization continuum, but is above the states derived from ionization from three other orbitals (Feshbach resonance). The computed oscillator strength of the bright electronic state in the phenolate is higher than in the carboxylate, in agreement with Hückel's model predictions. The analysis of photofragmentation channels shows that the most probable products for the methylated derivatives of the phenolate and carboxylate forms of p-CA(-) are CH(3), CH(2)O and CH(3), CH(2)O, CO(2), respectively, thus suggesting an experimental probe that may discriminate between the two isomers.
منابع مشابه
Evidence for trans-cis isomerization of the p-coumaric acid chromophore as the photochemical basis of the photocycle of photoactive yellow protein.
Analysis of the chromophore p-coumaric acid, extracted from the ground state and the long-lived blue-shifted photocycle intermediate of photoactive yellow protein, shows that the chromophore is reversibly converted from the trans to the cis configuration, while progressing through the photocycle. The detection of the trans and cis isomers was carried out by high performance capillary zone elect...
متن کاملEvidence for trans-cis isomerization of the p-coumaric acid chromophore as the photochemical basis of the photocycle of photoactive yellow
Analysis of the chromophore p-coumaric acid, extracted from the ground state and the long-lived blue-shifted photocycle intermediate of photoactive yellow protein, shows that the chromophore is reversibly converted from the trans to the cis configuration, while progressing through the photocycle. The detection of the trans and ¢is isomers was carried out by high performance capillary zone elect...
متن کاملبررسی اثر آپوپتوزی پی-کوماریک اسید بر رده سلولی سرطان سینه MCF-7
Introduction: Polyphenolic compounds have anti proliferative and induced apoptotic features on cancer cells. p-Coumaric acid can be abundantly found in fruits, vegetables, plant production and honey. . Breast cancer is the most frequently diagnosed cancer among women in the world. This study aimed to investigate the effect and mechanism of p- coumaric acid on apoptosis of MCF-7 breast can...
متن کاملEffect of microhydration on the electronic structure of the chromophores of the photoactive yellow and green fluorescent proteins.
Electronic structure calculations of microhydrated model chromophores (in their deprotonated anionic forms) of the photoactive yellow and green fluorescent proteins (PYP and GFP) are reported. Electron-detachment and excitation energies as well as binding energies of mono- and dihydrated isomers are computed and analyzed. Microhydration has different effects on the excited and ionized states. I...
متن کاملVolume-conserving trans-cis isomerization pathways in photoactive yellow protein visualized by picosecond X-ray crystallography
Trans-to-cis isomerization, the key reaction in photoactive proteins, usually cannot occur through the standard one-bond-flip mechanism. Owing to spatial constraints imposed by a protein environment, isomerization probably proceeds through a volume-conserving mechanism in which highly choreographed atomic motions are expected, the details of which have not yet been observed directly. Here we em...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 134 3 شماره
صفحات -
تاریخ انتشار 2011